Bacterial Synthesis and Applications of Nanoparticles

Jump To Abstract / References Section

Authors

  • Institute of Molecular Biology & Biotechnology, The University of Lahore

Keywords:

Nanoscience, Nanotechnology, Nanomaterials, Biological Synthesis, Bacterial Synthesis.

Published

Downloads

Issue & Section & Categories

How to Cite

Arshad, A. (2017). Bacterial Synthesis and Applications of Nanoparticles. Nano Science & Nano Technology: An Indian Journal, 11(2), 1–30. Retrieved from https://ischolar.sscldl.in/index.php/Nano/article/view/166718

 

Nanoparticles synthesis is the real division in the area of relevant Nanotechnology and Nanoscience. As of late, the merging amongst nanotechnology and science has made the new field of Nanobiotechnology that joins the utilization of natural elements, for example, algae, microscopic organisms, parasites, infections, yeasts and plants in various biophysical and biochemical procedures. The natural combination forms have a critical prospective to support nanoparticles generation without the utilization of brutal, harmful and costly chemicals usually utilized as a part of ordinary physical and substance forms. Combination of nanoparticles (NPs) utilizing microscopic organisms has risen as quickly creating research range in nanotechnology over the globe. The procedures of NPs combination result with required shapes and controlled sizes, quick and clean. These days, a variety of nanoparticles with very much characterized synthetic organization, size and morphology have been combined by utilizing distinctive microorganisms and their applications in numerous mechanical fields have been investigated. The uses of these biosynthesized nanoparticles in a wide range of potential zones are exhibited including focused on targeted drug passage, malignancy treatment and DNA investigation, biosensors and magnetic resonance imaging (MRI). The consumption of microorganisms for nanoparticles synthesis is a genuinely unique range of examination with extensive prospective for more improvement.

Downloads

Download data is not yet available.

Sintubin L, Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficientproduction of silver nanoparticles. Appl Microbiol Biotechnol. 2009;84:741-9.

Jadhav JP, Kalyani DC, Telke AA, et al. Evaluation of the efficacy of a bacterial consortium for the removal ofcolor, reduction of heavy metals and toxicity from textile dye effluent. Biores Technol. 2010;101:165-73.

Bazylizinki DA, Heywood BR, Mann S. Fe304 and Fe3S4 in a bacterium. Nature. 1993;366:218.

Sweeney RY, Mao C, Gao X, et al. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol.2004;11(11):1553-9.

Bai H, Zhang Z, Gong J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilizedRhodobacter sphaeroides. Biotechnol Lett. 2006;28(14):1135-39.

Wei X, Luo M, Li W, et al. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillusamyloliquefaciens extracts and AgNO3. Bioresour Technol. 2012;103:273-8

Baesman SM, Bullen TD, Dewald J, et al. Formation of tellurium nanocrystals during anaerobic growth of bacteriathat use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol. 2007;73(7):2135-43.

Bharde A, Wani A, Shouche Y, et al. Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc.2005;127(26):9326-7.

Mukherjee P, Ahmad A, Mandal D, et al. Bioreduction of AuCl (4) (-) ions by the fungus, verticillium sp. andsurface trapping of the gold nanoparticles formed D.M. and S.S. thank the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance. Angew Chem Int Ed Engl. 2001;40:3585-8.

Bansal V, Poddar P, Ahmad A. et al. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc. 2006;128:11958-63.

Cai J, Kimura S, Wada M, et al. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules. 2009;10:87-94.

Hofmann H. Nanomaterials; Introduction and Atoms Cluster. 2009. Version 2.0 09.2011.

Wei X, Luo M, Li W, et al. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol. 2012; 103:273-8 14. Kalimuthu K, Suresh BR, Venkataraman D, et al. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces. 2008;65:150-3.

Konishi Y, sukiyama T, Ohno K, et al. Intracellular recovery of gold by microbial reduction of AuCl−4 ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy. 2006;81(1):24-9.

Mokhtari N, Daneshpajouh S, Seyedbagheri S, et al. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Mater Res Bull; 2009;44(6):1415-21.

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotech Adv. 2009;27:76-83.

Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed. 2012;2(12)953-9.

Sanpo N, Wen C, Berndt CC, et al. Antibacterial properties of spinelferrite nanoparticles. In: Mendez A, editor. Microbial pathogens andstrategies for combating them: Science, technology and education. Spain: Formatex Research Centre. 2013;239-50.

Beveridge TJ, Murray RGE. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol. 1980;141(2):876-87.

Mahanty A, Bosu R, Panda P, et al. Microwave assisted rapid combinatorial synthesis of silver nanoparticles using E. coli culture supernatant. Inter J Pharma Bio Sci 2013;4(2):1030-5.

Shahverdi AR, Minaeian S, Jamalifar H, et al. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry. 2007;42:919-23.

Manivasagan P, Venkatesan J, Senthilkumar K, et al. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res Inter. 2013;287638-9 24. Lengke M, Southam G. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)- thiosulfate complex. Geochimica et Cosmochimica Acta; 2006;70(14):3646-61.

Lengke, MF, Southam G. The effect of thiosulfate oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochimica et Cosmochimica Acta. 2005;69(15):3759-72.

Bazylinski DA, Frankel RB, Jannasch HW. Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature. 1988;334:518-9.

Holmes JD, Smith PR, Gowing RE, et al. Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol. 1995;163(2):143-7.

Gerrard TL, Telford JN, Williams HH. Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacteriol. 1974;119(3):1057-60.

Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol. 2009;84(2):151-7.

Das V, Thomas R, Varghese R, et al. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech. 2014;4:121-6.

Kalishwaralal K, Deepak V, Ramkumarpandian S, et al. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mat Lett. 2008;62(29):4411-3

Woolfolk CA, Whiteley HR. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J Bacteriol. 1962; (84):647-58.

Bhowmik D, Chiranjib, Chandira RM, et al. Nanomedicine-an overview. Int J Pharm Tech Res. 2010;2(4):2143-51.

Bai HJ, Zhang ZM, GuoY, et al. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Coll Surf B Biointerf. 2009;70(1):142-146.

Oremland RS, Herbel MJ, Blum JS, et al. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol. 2004;70(1):52-60.

Kasthuri J, Kathiravan K, Rajendiran N. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: A novel biological approach. J Nanopart Res. 2008;11:1075-85.

Park Y, Hong YN, Weyers A, et al. Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 2011;5:69-78.

Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156:1-13.

Raveendran P, Fu J, Wallen SL. Completely “green†synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125:13940-1.

Beveridge JT, Hughes MN, Lee H, et al. Metal-microbe interactions: Contemporary approaches. Advances in Microbial Physiology. 1997;38:178-243.

Mohanpuria P, Rana NK, Yadav SK, et al. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanopart. 2008;10(3):507-17.

Angell P. Understanding microbially influenced corrosion as biofilm-mediated changes in surface chemistry. Curr Opin Biotech. 1999;10(3):269-72.

Zierenberg RA, Schiffman P. Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge. 1990;348(6297):155-7.

Harvey PI, Crundwell FK. Growth of Thiobacillus ferrooxidans: A novel experimental design for batch growthand bacterial leaching studies. Appl Environ Microb. 1997;63(7):2586-92.

Stephen JR, Macnaughton SJ. Developments in bacterial remediation of metals. Curr Opin Biotech. 1990;10(3):230-3.

Kang SH, Bozhilov KN, Myung NV, et al. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew Chem Int Edit, 2008;47(28):5186-9.

Deplanche k, Macaskie V, Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotech Bioeng. 2008;99(5):1055-64.

Michel C, Brugna M, Aubert C, et al. Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria: Key role of polyheme cytochromes C and hydrogenases. Appl Microbiol Biot. 2001;55(1):95-100.

Zadvorny OA, Zorin, Gogotov IN. Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Arch MicrobioL. 2006;184(5):279-85.

Matsunaga T, Takeyama H. Biomagnetic nanoparticle formation and application. Supramol Sci. 1998;5(4):391-4.

Arakaki A, Nakazawa H, Nemoto M, et al. Formation of magnetite by bacteria and its application. J R Soc Interface. 2008;5(26):977-99.

Moisescu C, Bonneville S, Tobler D, et al. Controlled biomineralization of magnetite (Fe3O4) by Magnetospirillum gryphiswaldense. MineraL Mag. 2008; 72(1):333-6.

Satomi M, Oikawa H, Yano Y. Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenic-acid-producing marine bacteriaisolated from sea-animal intestines. Int J Syst Evol Micr. 2003;53(2):491-9.

Moreau JW, Weber PK, Martin MC, et al. Extracellular proteins limit the dispersal of biogenic nanoparticles. 2007;316(5831):1600-3.

Amemiya Y, Arakaki A, Staniland SS, et al. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials. 2007;28(35):5381-9.

Prozorov T, Mallapragada SK, Narasimhan B, et al. Proteinmediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater. 2007;17(6):951-7.

Prozorov T, Palo P, Wang L, et al. Cobalt ferrite nanocrystals: Out-performing magnetotactic bacteria. ACS Nano. 2007;1(3):228-33.

Bankinter Foundation. Nanotechnology; The industrial revolution of the 21st century. 2006.

Lee H, Purdon AM, Chu V, et al. Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett. 2004;4:995-8.

Panigrahi S, Kundu S, Ghosh SK, et al. Selective one-pot synthesis of copper nanorods under surfactantless condition. Polyhydron. 2006;25(5):1263-9.

Bellucci S. Nanoparticles and nanodevices in biological applications. Lecture Notes in Nanoscale Sci Technol. 2009;4:1-198.

Acosta TLS, Lopez MLM, Nunez ARE, et al. Biocompatible metal-oxide nanoparticles: Nanotechnology improvement of conventional prosthetic acrylic resins. J Nanomater. 2011:941561.

Driscoll TJ, Lawandy NM, Nouri M, et al. Conferenceon Lasers and Electro-Optics; Baltimore, MD, USA:Optical Society of America. 1997.

Salata O. Applications of nanoparticles in biology and medicine. J Nanobiot. 2004;2(1):3.

Contado C, Pagnoni A. TiO2 in commercial sunscreen lotion: Flowfield-flow fractionation and ICP-AES together for size analysis. Anal Chem. 2008;80(19):7594-608.

Guo Y, Zhou Y, Jia D, et al. Fabrication and in vitro characterizationof magnetic hydroxycarbonate apatite coatings with hierarchicallyporous structures. Acta Biomater. 2008;4(4):923-931.

Sikong L, Kooptarnond K, Niyomwas S, et al. Photoactivityand hydrophilic property of SiO2 and SnO2 co-doped TiO2 nanocompositethin films. Songklanakarin Journal of Science & Technology. 2010;32(4):413-8.

Arbab AS, Bashaw LA, Miller BR, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic ironoxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003;229(3):838-46.

Limbach LK, Wick P, Manser P, et al. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidativestress. Environ Sci Technol. 2007;41(11):4158-63.

Nino MN, Martínez CGA, Aragon PA. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles. Nanotech. 2003;19(6):065711.

Ahn SJ, Lee SJ, Kook JK. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater. 2009;25(2):206-13.