Toxic Evaluation of Subchronic Exposure to Cadmium, Imidacloprid, and their Combination on Hematological Parameters in Buffalo Calves

Jump To Abstract / References Section

Authors

  • Department of Pharmacology and Toxicology, College of Veterinary Science, GADVASU, Ludhiana - 141012, Punjab
  • Department of Pharmacology and Toxicology, College of Veterinary Science, GADVASU, Ludhiana - 141012, Punjab
  • Department of Pharmacology and Toxicology, College of Veterinary Science, GADVASU, Ludhiana - 141012, Punjab

DOI:

https://doi.org/10.22506/ti/2015/v22/i3/137624

Keywords:

Buffalo Calves, Cadmium, Imidacloprid, Subchronic, Toxicity.

Published

Downloads

Issue & Section & Categories

How to Cite

Dorjay, T., Sandhu, H. S., & Kaur, R. (2015). Toxic Evaluation of Subchronic Exposure to Cadmium, Imidacloprid, and their Combination on Hematological Parameters in Buffalo Calves. Toxicology International (Formerly Indian Journal of Toxicology), 22(3), 46–51. https://doi.org/10.22506/ti/2015/v22/i3/137624

 

The present investigation was undertaken to evaluate hematological alterations induced by oral subchronic exposure to cadmium, imidacloprid, and their combination in buffalo calves. Cadmium exposure produced a significant decrease in hemoglobin (Hb) concentration, Total Erythrocyte Count (TEC), Packed Cell Volume (PCV), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), and MCH Concentration (MCHC). There was a significant increase in Total Leukocyte Count (TLC) but it did not produce any change in Erythrocyte Sedimentation Rate (ESR). Repeated oral administration of imidacloprid produced a significant decrease in Hb, PCV, TEC, MCV, MCH, and MCHC; however, there was a significant elevation in the levels of ESR and TLC. The combined exposure of cadmium and imidacloprid produced a significant decline in Hb concentration, PCV, TEC, MCV, and MCHC. It produced a significant increase in ESR and TLC, but no changes were observed in the levels of MCH.

Downloads

Download data is not yet available.

Goyer R. Toxic effect of metal. In: Klaassen CD, editor. Casarett and Doull’s Toxicology. The Basic Science of Poisons. 5th ed. New York: McGraw-Hill; 1995. p. 691–736.

Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure– A review of the literature and a risk estimate. Scand J Work Environ Health 1998; 24 Suppl 1:1–51.

Jarup L, Hellström L, Alfven T, Carlsson MD, Grubb A, Persson B, et al. Low level exposure to cadmium and early kidney damage: THe OSCAR study. Occup Environ Med 2000; 57:668–72.

Llobet JM, Granero S, Torres A, Schuhmacher M, Domingo JL. Biological monitoring of environmental pollution and human exposure to metals in Tarragona, Spain III. Blood levels. Trace Elem Electrolytes. 1998; 15:76–80.

Lafuente A, Márquez N, Pérez-Lorenzo M, Pazo D, Esquifino AI. Pubertal and postpubertal cadmium exposure differentially affects the hypothalamic-pituitary-testicular axis function in the rat. Food Chem Toxicol. 2000; 38:913–23.

Quintas G, Armenta S, Garrigues S, Guardia MD. Fourier transform infrared determination of imidacloprid in pesticide formulations. J Braz Chem Soc. 2004; 15:307–12.

Kidd H, James D. Agrochemicals Handbook. 3rd ed. Cambridge, England: Royal Society of Chemistry; 1994.

Shimomura M, Okuda H, Matsuda K, Komai K, Akamatsu M, Sattelle DB. Effects of mutations of a glutamine residue in loop D of the alpha7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands. Br J Pharmacol. 2002; 137:162–9.

Benjamin MM. Outline of veterinary clinical pathology. 3rd ed. Ludhiana, India: Kalyani Publisher; 1985. p. 25, 48, 60.

Kostic MM, Ognjanovic B, Dimitrijevic S, Zikic RV, Stajn A, Rosic GL, et al. Cadmium-induced changes of antioxidant and metabolic status in red blood cells of rats: In vivo effects. Eur J Haematol. 1993; 51:86–92.

Hiratsuka H, Katsuta O, Toyota N, Tsuchitani M, Umemura T, Marumo F. Chronic cadmium exposure-induced renal anemia in ovariectomized rats. Toxicol Appl Pharmacol. 1996; 137:228–36.

Chun YS, Choi E, Kim GT, Choi H, Kim CH, Lee MJ, et al. Cadmium blocks Hypoxia-Inducible Factor (HIF)-1-mediated response to hypoxia by stimulating the proteasome-dependent degradation of HIF-1alpha. Eur J Biochem. 2000; 267:4198–204.

Moore MR, Goldberg A, Yeung-Laiwah AA. Lead effects on the heme biosynthetic pathway. Relationship to toxicity. Ann N Y Acad Sci. 1987; 514:191–203.

Turk JR, Casteel SW. Clinical biochemistry in toxicology. In: Kaneko JJ, Harvey JW, Bruss ML, editors. Clinical Biochemistry of Domestic Animals. 5th ed. San Diego: Academic Press; 1997. p. 829–44.

Dacie JV, Lewis SM. Practical Haematology. 5th ed. Edinburgh: Churchill Livingstone; 1997. p. 580–2.

Livingstone C, Kaur B, Sandhu HS, Kaur R. Toxic effects of subacute oral exposure of imidacloprid on biochemical parameters in crossbred cow calves. Toxicol Int. 2006; 13:43–7.

Hassan GA, Salem MH, Aba-Allah GA, Shahar N, Tohraa AE. Effect of organophosphorus (dimethoat) and pyrithroid pesticide on plasma level of cortisol and thyronine and on some haematological characteristics in growing male rabbits. Indian J Anim Sci. 1988; 58:1395–401.

Gossett KA. Anemias associated with drugs and chemicals. Schalm’s Veterinary Haematology. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2004. p. 185–9.

Most read articles by the same author(s)